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Abstract Luminescent quantum dots (QDs) have widely
used in some biological and biomedical fields due to their
unique and fascinating optical properties, meanwhile the
interaction of QDs with biomolecules recently attract
increasing attention. In this paper, we employed fluores-
cence correlation spectroscopy (FCS) to investigate the
nonspecific interaction between CdTe QDs and bovine
serum albumin (BSA) as a model, and evaluate their
stoichiometric ratio and association constant. Our results
documented that BSA was able to bind to CdTe QDs and
form the QD–BSA complex by a 1:1 stoichiometric ratio.
The association constant evaluated is 1.06±0.14×107 M−1

in 0.01 M phosphate buffer (pH=7.4). Furthermore, we
found that QD–BSA complex dissociated with increase of
ion strength, and we speculated that the interaction of CdTe
QDs with BSA was mainly attributed to electrostatic
attraction. Our preliminary results demonstrate that fluores-
cence correlation spectroscopy is an effective tool for
investigation of the interaction between quantum dots (or
nanoparticles) and biomolecules.
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Introduction

Recently luminescent quantum dots (QDs) are gaining
tremendous interest in biological and biomedical fields

because of their unique and fascinating properties, such as
tunable emission wavelength, broad absorption and sharp
emission spectra, high quantum yield (QY), resistance to
the chemical degradation and photobleaching, and versatil-
ity in surface modification [1–3]. Some water-soluble QDs
conjugated with biomolecules were successfully used in
fluorescent resonance energy transfer (FRET), in vivo and
vitro imaging, immunoassay, DNA hybridization, and
potential photodynamic therapy [4–10]. However, the
interaction of QDs with biomolecules is very little known,
which is very important to know the bioeffects of QDs. So
far, some analytical techniques, such as atomic force
microscopy (AFM), gel electrophoresis, dynamic light
scattering (DLS), size-exclusion high-performance liquid
chromatography (SE-HPLC), and circular dichroism spec-
troscopy (CD), have been tried to study the interaction of
QDs with biomolecules [4, 11–17]. But these current
techniques are still difficult to obtain some important
information on the interaction of QDs with biomolecules
such as binding constant. Particularly, the experimental
evaluations of some parameters like stoichiometry and
association constant, which are the fundamental prerequi-
site for QD bio-applications, are rarely reported. In general,
the stoichiometry of QD bioconjugation was calculated
theoretically according to the structures of QDs and ligands,
but the effects of their steric hindrance was not considered
in this approach [18]. Recent notable works were carried
out for characterization of the stoichiometry of QD
conjugates using the techniques mentioned above [12–14].
Especially, Lindman and Cedervall reported a noteworthy
study on the hydrophobic interaction between large size
nanoparticles and biomolecules [19, 20]. They obtained the
stoichiometry and thermodynamic parameters for adsorp-
tion of human serum albumin to copolymer nanoparticles
using isothermal titration calorimetry.
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Fluorescence correlation spectroscopy (FCS) is an
ultrasensitive and noninvasive single molecule detection
technique that uses statistical analysis of the fluctuations of
fluorescence emitted from a small, optically well-defined
open volume element [21, 22]. Some important informa-
tion, such as the average number of luminescent particles in
the volume and the coefficient of diffusion, can be obtained
by the autocorrelation function (ACF), and the changes of
ensemble luminescence intensity and the brightness per
particle (BPP) can be measured based on count rate and the
number of bright particles [23]. So far, this method has
been successfully used in some fields such as DNA
hybridization, immunoassay and single cell analysis, and
has become a useful analytical technique to evaluate the
kinetics and thermodynamics parameters of biomolecule
interaction [24–27]. Recently, FCS was also used to
characterize some important parameters of QDs, including
their concentration, brightness, hydrodynamic radius, and
monodispersity [28–32]. In this work, we want to explore
the possibility of investigation on interaction of QDs and
proteins by FCS. In this study, CdTe QDs and bovine serum
albumin (BSA) were used as model samples. We observed
that BSA easily adsorbed to the surface of CdTe QDs in
phosphate buffer. Importantly, no significant change of the
absorption and emission spectra of BSA and CdTe QDs
mixtures occurred compared to free CdTe QDs. The
interaction of BSA with CdTe QD was able to be
characterized by FCS, and the stoichiometric ratio and
association constant of CdTe QD–BSA complex were
obtained by the one-component and two-component fit of
ACF.

Experimental section

Materials and reagents Rhodamine 6G and Alexa Fluor
succinimidyl esters (Alexa647) were purchased from
Molecular Probes (Eugene, OR). Bovine serum albumin
(BSA), Rhodamine B isothiocyanate (RBITC) and mercap-
topropionic acid (MPA) were obtained from Aldrich-
Chemie (Steinheim, Germany). All other chemicals used
in this study were of the highest purity available and
purchased from regular sources. All solutions were pre-
pared with ultrapure water purified on Millipore Simplicity
(Millipore, USA), and filtered through 0.22 μm membrane
filters (Shanghai Bandao Co., China) prior to use.

Preparation and characterization of CdTe QDs Water-
soluble CdTe quantum dots was synthesized according to
the procedure reported elsewhere [33]. The as-prepared
products were precipitated with 2-propanol to remove free
Cd2+ and MPA, and the approach was described in the
reference [34]. Emission spectra were recorded using a

Varian Cary spectrometer, and absorption spectra were
obtained by a Lambda 20 UV-visible spectrophotometer
(Perkin-Elmer). The QY of CdTe QDs was measured
according to the method described in the references [34].
The absorption peak position and the emission peak
position of CdTe QDs used here were at 576 nm and
608 nm respectively, and the QY of CdTe QDs was about
50%.

Conjugation and purification approaches BSA was conju-
gated to CdTe QDs by nonspecific attraction. Typically,
certain concentration QDs solutions were titrated with the
different volume of BSA solution in 0.01 M phosphate
buffer (pH=7.4). The reactions were carried out at room
temperature for 3∼4 h. The mixtures were diluted to the
concentration of 0.25 μM in CE procedure and 50 nM in
FCS measurement. Certain labeling mixtures were purified
with the YM-100 ultra-filtration membrane (NMWL 100
000, Millipore, USA) according to the procedure in the
reference in order to obtain the pure QD–BSA complex.
Meanwhile, RBITC was used to label BSA in order to
determine size of BSA. The ratio of RBITC to BSA was
1:10 approximately, and the YM-10 ultra-filtration mem-
brane (NMWL 10 000) was used to remove the free
RBITC. Besides, in order to prepare amount of Alexa647-
labeled BSA, BSA was reacted with Alexa647 with the 1:
10 ratio of BSA to Alexa647 to ensure that every BSA
molecule was labeled with Alexa647. The free Alexa647
was removed by the YM-30 ultra-filtration membrane
(NMWL 30 000).

Capillary electrophoresis procedure A P/ACE MDQ cap-
illary electrophoresis system (Beckman Counter, Fullerton,
CA, USA) with LIF detector was employed, and Ar ion
laser (488 nm) was used as the exciting light source. Fused-
silica capillaries were purchased from Yongnian Optical
Fiber Co. (Hebei, China). In this study, CE was used to
characterize the QD and QD–BSA complex.

The CE was performed under a normal polarity separation
mode. A 40 cm capillary with 30 cm effective length and
inner diameter (I.D.) of 75 μm was used for the
characterization of the QD and QD–BSA complex. The
new capillary was rinsed successively with 0.1 M NaOH
for 10 min, water for 3 min, 0.1 M HCl for 10 min, then
with water for 3 min and finally with running buffer
(6.25 mM borate buffer, pH=10) for 5 min. The samples
were introduced into the capillary by pressure (0.5 psi) for
4 s. The applied voltage was 12 kV, and the temperature of
the separation capillary column was thermostated at 25°C.
Between each measurements, the capillary was rinsed with
0.1 M NaOH for 5 min, and then with the electrophoresis
buffer for 3 min.
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Fluorescence correlation spectroscopy measurement Fluor-
escence Correlation Spectroscopy (FCS) measurements
were performed with a home-built FCS system [35]. In
brief, for QD and its protein hybrid, the 543 nm laser line
from a He–Ne ion laser (Coherent, USA.) was attenuated to
about 40 μW by a circular neutral density filter, and then
expanded to underfill the back aperture of the objective
lens. The expanded laser beam was focused with a water
immersion objective (UplanApo, 60×NA1.2, Olympus,
Japan) to a small volume within the diluted sample. The
resulting excitation volume is on the order of 1 fL. The
excited fluorescence signal collected by the objective passed
through the dichroic mirror (570DRLP, Omega Optical,
USA) and then was filtered by a band-pass filter (605DF50,
Omega Optical, USA) to block scattering laser light. Finally,
the fluorescence was coupled into a 35-μm pinhole at the
image plane in front of the single-photon counting module
(SPCM-AQR16, Perkin-Elmer EG and G, Canada). The
fluorescence fluctuations were correlated with a digital
correlator (Flex02-12D/C, Correlator.com, USA).

For the measurements of Alexa647 labeled samples, the
632.8 nm He–Ne laser (Hongyang, China), 660DF50 band-
pass filter (Omega Optical, USA), 650DRLP dichroic
mirror (Omega Optical, USA) were employed.

All raw FCS data were analyzed with the standard
equation for multi-component model (Eq. 1) and non-

linearly fitted with the Microcal Origin 6.0 software
package based on the Levenberg−Marquardt algorithm:
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where N is the average number of fluorescent particles
diffusing in the focused volume. T is the fraction of the
fluorescent particles in triplet state (for QDs T=0) whose
lifetime is τtr. yi is the fraction of the ith fluorescent
component. ω0 and z0 are the transverse and axial radii of
the focus volume respectively. τi is the characteristic
diffusion time of the ith component. The Eq. 1 is valid
when the quantum yield of free and labeling fluorescent
particles are the same. The characteristic diffusion time of
the ith component is defined as

t i ¼ w2
0

4Di
ð2Þ

Where Di is the diffusion constant, and can be obtained by
calibrating with the standard substance (Eq. 3). In our
experiments, R6G and Alexa647 are used as the standard
substances. The diffusion coefficient of R6G and Alexa647
are both 2.8×10−6 cm2/s [35, 36].

Di ¼ tR6G
t i

DR6G ð3Þ

Fig. 1 Normalized autocorrelation functions and their fitting curves
of CdTe QDs, a mixture by a 1:10 molar ratio (QD:BSA), and purified
QD–BSA complex from left to right respectively. The inset depicts the
corresponding electrophoregrams of CdTe QDs, a mixture by a 1:10
molar ratio (QD:BSA), and purified QD–BSA complex. The residuals
of three fitted correlation curves are shown as “Res a”, “Res b” and
“Res c” standing for fit residuals of CdTe QDs, a mixture by a 1:10
molar ratio (QD:BSA), and purified QD–BSA complex, respectively

Fig. 2 One-component fits to the experimental ACFs for Alexa647,
Alexa-BSA and Alexa-BSA-QD. All functions are normalized for
clarity. Their corresponding BPPs are 16.3 kHz (Alexa647), 43.6 kHz
(Alexa-BSA), and 46.9 kHz (Alexa-BSA-QD), respectively
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For spherical particle D is inversely proportional to its
hydrodynamic radius according to the Stokes–Einstein
equation

D ¼ kT

6phr
ð4Þ

where kT is the thermal energy and η is the viscosity. The
hydrodynamic radius (r) of the fluorescent particle can be
obtained by the diffusion constant consequently.

Results and discussion

Determination of stoichiometric ratio

In this study, water-soluble CdTe quantum dots were
synthesized using cadmium salts and NaHTe as precursors
in the presence of MPA as stabilizer. Prior to study on
interaction of QDs and protein, CdTe QDs were precipitat-
ed with 2-propanol to remove free Cd2+, which was known
to easily react with disulfide bridges in BSA and denature
the protein. Figure 1 shows the nice normalized ACFs of
free CdTe QD, a mixture and QD–BSA complex, respec-
tively. The results demonstrated that free CdTe QD and
QD–BSA complex had significantly different diffusion
time, which demonstrated that BSA was able to adsorb to
BSA. In experiments, the QD–BSA complex was purified
from QDs and BSA reaction mixture with the YM-100
ultra-filtration membrane. The CE (as shown in Fig. 1)
further proved that there were no free QDs in the purified
QD–BSA complex. The measured characteristic diffusion

time of CdTe QD was 171±2 μs (n=10) with the brightness
per particle (BPP) of 11.5 kHz, whose corresponding
hydrodynamic diameter was 4.4±0.1 nm. This result was
basically in agreement with the size measured by the
transmission electron spectroscopy (TEM). The ACF fitting
results indicated that the characteristic diffusion time of
QD–BSA complex was 296±4 μs with BPP of 9.9 kHz,
whose corresponding hydrodynamic diameter was 7.6±
0.2 nm. Meanwhile, the hydrodynamic diameter of BSA
labeled with RBITC was evaluated to 5.6±0.1 nm by FCS.
By comparing the hydrodynamic diameters of QD–BSA
complex with CdTe QDs and BSA, we preliminarily
deduced that one BSA molecule was attached with a single
CdTe QD. Nevertheless, the hydrodynamic diameter of
QD–BSA complex was not completely in agreement with
the theoretically summed value of the diameters. This
phenomenon is probably due to non-spherical shapes of
BSA and QD–BSA complex. In the evaluation of hydro-
dynamic diameter according to Einstein formula, normally
the BSA and QD–BSA complex were regarded as a
spherical shape.

In order to further confirm the stoichiometry determina-
tion based on the hydrodynamic radius, the reverse titration
was conducted. Here, the Alexa-BSA hybrid as probe was
applied to titrate CdTe QD. The experiments were carried
out with 632.8 nm He–Ne laser. The ACFs of Alexa647,
Alexa-BSA and the complex of CdTe QD and labeled BSA
are depicted in Fig. 2. It is noteworthy that about 2∼3
Alexa647 molecules were conjugated to one BSA molecule
from BPP comparison, and Alexa647-BSA and Alexa647-
BSA-CdTe have comparable BPP (43.6 kHz for Alexa647-
BSA and 46.9 kHz for Alexa647-BSA-CdTe). The result
firmly supported the 1:1 conjugation of CdTe QD with
BSA.

Fig. 3 The titration curve of FCS measurement depending on the
concentration of BSA derived from the fits of ACF at a QD
concentration of 50 nM

Fig. 4 Effects of NaCl concentrations on the association constant.
Error bars are standard deviations
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Evaluation of association constant

As shown in the above section, the conjugation of QDs and
BSA can be described by a 1:1 stoichiometric ratio.

QDþ BSA Ð QD� BSA ð5Þ
The percentage of the QD–BSA complex (y) can be
acquired with FCS, which is defined as:

y ¼ QD� BSA½ �
QD½ � þ QD� BSA½ � ð6Þ

The dissociation constant (Kd) can be defined as:

Kd ¼ QD½ � BSA½ �
QD � BSA½ � ð7Þ

where [QD] and [BSA] are the concentrations of free QDs
and BSA respectively, and [QD–BSA] is the concentration
of QD–BSA complex. From the Eqs. 6 and 7, y can be
express as:

y ¼ Kd þ cQDs þ cBSA
� �

2cQDs

� Kd þ cQDs þ cBSA
2cQDs

� �2

� cBSA
cQDs

 !1
2

ð8Þ

where cQDs and cBSA stand for the initial concentration of
QDs and BSA, and y is determined from each titration point
in FCS measurement. For all evaluations of Kd, this titration
curve was fitted by Levenberg–Marquardt algorithm of the
Microcal Origin 6.0 software package with the fixed QD
concentration. The association constant (Ka) is the recipro-
cal of the Kd.

Herein, FCS was employed to evaluate the association
constant of interaction of QDs with BSA. The equilibrium
of association reaction reached in 2 h (determined by FCS,
and the characteristic diffusion time of the mixture became
constant in 2 h). The characteristic diffusion time of CdTe
QD and QD–BSA complex determined in the above FCS
measurements, were different by more than a factor of 1.6
(τCdTe=171±2 μs and τcomplex=296±4 μs). Meanwhile, we
observed that luminescence intensity per QD–BSA com-
plex was comparable to those of per QD (11.4 kHz for BPP of
CdTe QD and 9.9 kHz for BPP of QD–BSA complex). These
data suggest us that two-component fitting procedure can be
used to distinguish the two different components of QDs and
QD–BSA complex [37]. In two-component fitting, the
characteristic diffusion times of CdTe QD and QD–BSA
complex were fixed. The titration curve of percentage of the
QD–BSA complex (y) vs. the concentration of BSA is
depicted in Fig. 3 based on the results by fitting two-
component fit procedure. In the fit procedure, the character-

istic diffusion time increased with BSA concentration,
indicating the formation of QD–BSA complex. A fit with
Eq. 8 gave a value of 9.44±1.25×10−8 M for the dissociation
constant at room temperature (about 20°C). The
corresponding association constant was 1.06±0.14×107 M−1.

Influences of ion strength

Nonspecific interaction usually includes electrostatic attrac-
tion and hydrophobic force. Goldman et al. investigated the
interaction of QDs with avidin, NeutrAvidin and Strepavi-
din, and they believed that the conjugation of QDs with
avidin was attributed to charge–charge interaction [38]. Ha
et al. immobilized esterase onto 16-mercapto- hexadecanoic
acid (MHA) protected gold nanoparticles and observed the
existence of both electrostatic attraction and hydrophobic
force [39]. In this study, to elucidate the nonspecific
interaction of BSA with CdTe QDs, sodium chloride
solutions at different concentration (0∼0.2 M) were used
to investigate the effects of ion strength on the nonspecific
interaction with FCS. Here, the influences of sodium
chloride (0∼0.2 M) on the brightness of QDs and QD–
BSA complex were basically neglectable. Fig. 4A depicts
the dependence of association constant (Ka) of QD–BSA
complex on salt concentration in solution. The value of Ka

decreased with the increase of sodium chloride concentra-
tion. This preliminary result suggested us that the interac-
tion between QDs and BSA was mainly attributed to their
electrostatic attraction.

Conclusion

In this work we studied nonspecific interaction of CdTe QDs
and BSA using FCS, and evaluated the stoichiometry and
association constant of the CdTe QD–BSA complex. The
stoichiometry of QD–BSA conjugation was 1:1 based on the
sizes and BPP of the free particles and their complex, and
the association constant between CdTe QD and BSA was
1.06±0.14×107 M−1. Furthermore, we investigated the
effects of the ion strength on the CdTe QD–BSA complex,
and found that the complex was dissociated considerately
with the increase in the ion strength. We speculated that the
nonspecific conjugation of QD with BSA was mainly
attributed to the electrostatic attraction. Our preliminary
results demonstrate that FCS is a very useful analytical
technique for the investigations of the interactions of QDs
(or nanoparticles) with biomolecules.
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